On Approximation Complexity of Edge Dominating Set Problem in Dense Graphs

نویسندگان

  • Richard Schmied
  • Claus Viehmann
چکیده

We study the approximation complexity of the Minimum Edge Dominating Set problem in everywhere ǫ-dense and average ǭ-dense graphs. More precisely, we consider the computational complexity of approximating a generalization of the Minimum Edge Dominating Set problem, the so called Minimum Subset Edge Dominating Set problem. As a direct result, we obtain for the special case of the Minimum Edge Dominating Set problem in everywhere ǫ-dense and average ǭdense graphs by using the techniques of Karpinski and Zelikovsky, the approximation ratios of min{2, 3 1+2ǫ} and of min{2, 3 3−2 √ 1−ǭ}, respectively. On the other hand, we give new approximation lower bounds for the Minimum Edge Dominating Set problem in dense graphs. Assuming the Unique Game Conjecture, we show that it is NP-hard to approximate the Minimum Edge Dominating Set problem in everywhere ǫ-dense graphs with a ratio better than 2 1+ǫ with ǫ ≥ 1/2 and 2 2− √ 1−ǭ with ǭ ≥ 3/4 in average ǭ-dense graphs. Dept. of Computer Science, University of Bonn. Work supported by Hausdorff Doctoral Fellowship. Email: [email protected] Dept. of Computer Science, University of Bonn. Work partially supported by Hausdorff Center for Mathematics, Bonn. Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

Parameterized Complexity of Neighborhood Problems in Graphs with no Small Cycles

We show that several problems that are hard for various parameterized complexity classes on general graphs, become fixed parameter tractable on graphs with no small cycles. More specifically, we give fixed parameter algorithms for Dominating Set, t-Vertex Cover (where we need to cover at least t edges) and several of their variants on graphs that have no triangles or cycles of length 4. These p...

متن کامل

Approximation hardness of edge dominating set problems

We provide the first interesting explicit lower bounds on efficient approximability for two closely related optimization problems in graphs, Minimum Edge Dominating Set and Minimum Maximal Matching. We show that it is NP-hard to approximate the solution of both problems to within any constant factor smaller than 7 6 . The result extends with negligible loss to bounded degree graphs and to every...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Capacitated b-Edge Dominating Set and Related Problems

In this paper, we discuss the approximability of the capacitated b-edge dominating set problem, which generalizes the edge dominating set problem by introducing capacities and demands on the edges. We present an approximation algorithm for this problem and show that it achieves a factor of 8/3 for general graphs and a factor of 2 for bipartite graphs. Moreover, we discuss the relationships of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009